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Sex differences in the link between blood
cobalt concentrations and insulin resistance
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Abstract

Background: Little is known about the effects of environmental cobalt exposure on insulin resistance (IR) in the
general adult population. We investigated the association between cobalt concentration and IR.

Methods: A total of 1281 subjects aged more than 20 years with complete blood cobalt data were identified from
the National Health and Nutrition Examination Survey (NHANES) 2015–2016 cycle. Blood cobalt levels were
analyzed for their association with IR among all populations and subgroups by sex. Regression coefficients and 95%
confidence intervals (CIs) of blood cobalt concentrations in association with fasting glucose, insulin and
homeostatic model assessment of insulin resistance (HOMA-IR) were estimated using multivariate linear regression
after adjusting for age, sex, ethnicity, alcohol consumption, body mass index, education level, and household
income. A multivariate generalized linear regression analysis was further carried out to explore the association
between cobalt exposure and IR.

Results: A negative association between blood cobalt concentration (coefficient = − 0.125, 95% CI − 0.234, − 0.015;
P = 0.026) and HOMA-IR in female adults in the age- and sex-adjusted model was observed. However, no
associations with HOMA-IR, fasting glucose, or insulin were found in the overall population. In the generalized linear
models, participants with the lowest cobalt levels had a 2.74% (95% CI 0.04%, 5.50%) increase in HOMA-IR (P for
trend = 0.031) compared with subjects with the highest cobalt levels. Restricted cubic spline regression suggested
that a non-linear relationship may exist between blood cobalt and HOMA-IR.

Conclusions: These results provide epidemiological evidence that low levels of blood cobalt are negatively
associated with HOMA-IR in female adults.
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Introduction
Insulin resistance (IR) is a condition in which normal
concentrations of insulin cause a smaller than expected
response in blood glucose levels [1]. Individuals with IR
are susceptible to type 2 diabetes [2], and IR appears to
play a crucial role in the pathogenesis of several diseases,
such as polycystic ovary syndrome [3], Alzheimer’s dis-
ease [4], and cognitive dysfunction [5]. Although genetic
predisposition [6], obesity [7], gut microbiota [8], and
lifestyle [9] may evoke a disturbance in insulin sensitiv-
ity, various environmental factors also contribute to the
risk of IR [10, 11]. Epidemiological studies have shown
that exposure to several metals at chronic low levels was
associated with a greater risk of IR [12]. However, the
associations between blood cobalt (Co) and IR have not
been studied.
Co is regarded as an essential trace mineral for all ani-

mals because it is the active center of a group of coen-
zymes, i.e., part of the B12 vitamin, which is important
for human cell metabolism [13]. Generally, cobalt com-
pounds are used as colorants in glass, ceramics, and
paints; as catalysts; and as paint drying agents. Addition-
ally, cobalt compounds are added into agricultural sup-
plies and medicine as trace element additives. Cobalt
can enter the body through the ingestion of contami-
nated food, respiration, skin absorption, and exposure to
components of biomaterials [14]. However, it is only es-
sential within a certain range, and a previous study has
shown that normal serum values of cobalt are less than
0.5 μg/L [15]. However, these studies were experimental
and examined only the short-term effects of excessive
cobalt exposure.
In the present study, we explored the association be-

tween blood Co levels and IR using data from the Na-
tional Health and Nutrition Examination Survey (NHAN
ES), a nationwide survey of the general population in the
USA. Moreover, subgroup analysis was performed to in-
vestigate sex differences.

Methods
Study subjects
The National Center for Health Statistics (NCHS; Cen-
ters for Disease Control and Prevention, Atlanta, GA,
USA) conducted the NHANES studies. The NHANES
protocols were approved by the NCHS Research Ethics
Review Board, and a data user agreement was obtained
from the website (https://www.cdc.gov/nchs/data_
access/restrictions.htm). The NHANES is a cross-
sectional study and contains a nationally representative
sample of the non-institutionalized USA population. We
selected only the data from the participants in the 2015–
2016 NHANES for whom cobalt concentrations had
been measured. The dataset included information on
basic characteristics, a health questionnaire, laboratory

data (i.e., blood cobalt, fasting glucose, and fasting insu-
lin) and body measurements. All data used were re-
trieved from the website of the NCHS.
Populations in the NHANES over a range of 20 years

were chosen to form a random subgroup for the detec-
tion of blood cobalt levels and IR. The two primary ex-
clusion criteria included a missing fasting glucose or
insulin measurement or an age less than 20 years. We
also excluded women who were pregnant because they
may have an abnormal physiological status that prevents
accurate detection of IR. In addition, we excluded dia-
betic subjects because the diabetic condition would in-
fluence the IR status. The criteria for judging type 2
diabetes mellitus is as follows: (a) a fasting blood glucose
level of greater than or equal to 7.0 mmol/l (126 mg/dl);
(b) a 2-h plasma glucose level equal or greater than 11.1
mmol/l (200 mg/dl); and (c) the self-reported use of dia-
betes, insulin or oral hypoglycemic agents, as well as the
presence of diabetic retinopathy.

Blood cobalt and IR measurement
The method for measuring blood cobalt concentrations
is described in detail elsewhere [16]. IR was estimated by
serum analysis. Fasting glucose [17] and serum insulin
levels were measured according to standard procedures.

Covariates
To reduce bias in our results, we adjusted a priori con-
founders in the regression analyses in the present study.
The confounders were as follows: age, sex, ethnicity,
body mass index (BMI), education level, alcohol use, and
poverty income ratio (PIR). BMI was divided into three
categories: < 25 kg/m2, 25–30 kg/m2, and > 30 kg/m2.
Alcohol consumption was classified by determining
whether alcoholic drinks had been consumed within the
past year. The PIR was represented as household income
by the poverty guidelines specific to the survey year,
which was categorized as low (< 1) or high (≥ 1).

Statistical methods
Continuous variables and categorical variables are
expressed as means ± standard deviations and frequen-
cies, respectively. Because the data were skewed in na-
ture, we transformed the blood cobalt levels to
logarithmic form (Supplemental Figure 1), and blood co-
balt was regarded as quartiles in further analyses. Re-
gression coefficients (Beta) and 95% confidence intervals
(CIs) were presented to reflect the association between
blood cobalt concentration and IR in the age- and sex-
adjusted and fully adjusted multiple variable linear re-
gression models. Homeostatic model assessment of insu-
lin resistance ((HOMA-IR) = [(fasting insulin (μU/ml) *
fasting glucose (mmol/l)/22.5]) [18] was used to reflect
the IR status. Logistic regression analyses were
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performed to investigate the association between blood
cobalt concentration and IR. The cutoff point of
HOMA-IR was 4.78 (the population-specific 75th per-
centile of HOMA-IR), according to a previous study
[19]. We performed multivariable linear models to ex-
plore the associations between interquartile ratio in-
creases (IQ ratio = 75th/25th percentiles of cobalt levels)
in blood cobalt and HOMA-IR. Furthermore, we used
ordinal variables as integer values to conduct the statis-
tical tests for linear trends. The magnitudes of the above
associations are the average percent difference in
HOMA-IR within each IQ ratio group, which was
grouped as the subjects’ cobalt variables. The formula of
magnitudes was [(IQ ratio^Beta) − 1] * 100. Restricted
cubic spline regression models were performed to inves-
tigate the nonlinear relationship between blood Co and
HOMA-IR. We used SPSS version 20.0 (SPSS, Inc., Chi-
cago, IL) to analyze all data. All two-sided P values <
0.05 were considered to indicate statistical significance.

Results
The final investigation sample consisted of 1281 adults
(720 males and 561 females) from this subgroup (Fig. 1).
Table 1 shows that blood cobalt levels were significantly
decreased among subjects who were less than 60 years
old, were male, and consumed alcohol. The means ±

standard deviations of HOMA-IR, fasting glucose, and
insulin are listed in Supplemental Table 1 and classified
by quartile of cobalt.
The logistic regression results showed that co-

balt concentration was not significantly associated
with the risk of IR, regardless of whether the age-
and sex-adjusted model or fully adjusted model
was used (Supplemental Table 2). The linear re-
gression results suggested that blood the cobalt
concentration was negatively associated with the
HOMA-IR index in females in age- and sex-
adjusted models; however, the association moved
substantially towards the null in the fully adjusted
model (Table 2).
Table 3 indicates that blood cobalt concentrations in

the lowest quartile compared with the highest quartile
were positively associated with higher HOMA-IR (co-
efficient = 0.073, 95% CI 0.007, 0.139 for individuals
under aged 60; coefficient = 0.062, 95% CI 0.001,
0.123 for females), with evidence of a dose-response
relationship (P for trend = 0.016 and 0.037). Add-
itionally, an association with blood cobalt concentra-
tion existed in the PIR ≥ 1 subgroup. Similarly,
participants in the lowest cobalt quartile had a mean
HOMA-IR that was 2.74% greater (95% CI 0.04%,
5.50%) than that in the highest quartile in females

Fig. 1 Eligible participants and those included in the analyses of the associations between blood cobalt exposure and insulin resistance in adults
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(Fig. 2). The relationship between blood cobalt and
HOMA-IR in males and females is visualized by a
scatter plot and fitted line with 95% CI (Fig. 3). Fig-
ure 4 shows the continuous relationship of blood Co
with HOMA-IR based on the restricted cubic spline

regression models. Significant nonlinear associations
were detected between blood Co and HOMA-IR
among males (P = 0.037) and females (P = 0.023), al-
though the overall population did not seem to show a
significant difference.

Table 1 Blood cobalt concentration (mean ± SD) according to demographics and lifestyle

Cobalt (μg/L)

Participants [n (%)] Mean ± SD P value

Overall 1281 (100%) 0.20 ± 0.51

Age (years) < 0.001

< 60 720 (56.2%) 0.19 ± 0.57

≥ 60 561 (43.8%) 0.21 ± 0.40

Gender < 0.001

Male 602 (47.0%) 0.18 ± 0.38

Female 679 (53.0%) 0.22 ± 0.60

Race 0.696

Mexican American 180 (14.1%) 0.26 ± 1.10

Other Hispanic 180 (14.1%) 0.16 ± 0.13

Non-Hispanic White 503 (39.3%) 0.20 ± 0.42

Non-Hispanic Black 261 (20.4%) 0.17 ± 0.13

Other race–including multiracial 157 (12.3%) 0.20 ± 0.27

BMI (kg/m2) 0.061

< 25 345 (26.9%) 0.18 ± 0.30

25–30 436 (34.0%) 0.23 ± 0.73

> 30 488 (38.1%) 0.19 ± 0.35

Alcohol use 0.001

Yes 800 (62.5%) 0.19 ± 0.34

No 385 (30.1%) 0.22 ± 0.77

PIR 0.248

< 1 233 (18.2%) 0.23 ± 0.97

≥ 1 910 (71.0%) 0.19 ± 0.32

Education level 0.228

Less than 9th grade 156 (12.2%) 0.27 ± 1.17

9th–11th grade 146 (11.4%) 0.17 ± 0.25

High school graduate/GED or equivalent 285 (22.2%) 0.20 ± 0.44

Some college or AA degree 364 (28.4%) 0.19 ± 0.31

College graduate or above 330 (25.8%) 0.18 ± 0.20

Table 2 Multivariable associations of blood cobalt concentrations with insulin resistance in US adults during 2015–2016

HOMA-IR Model 1 Model 2

Coefficient 95% CI P value Coefficient 95% CI P value

Continues variable Overall − 0.060 − 0.142, 0.023 0.157 − 0.063 − 0.137, 0.011 0.097

Male − 0.032 − 0.165, 0.100 0.631 − 0.082 − 0.199, 0.036 0.173

Female − 0.125 − 0.234, − 0.015 0.026 − 0.095 − 0.203, 0.012 0.082

Model 1: age and gender
Model 2: model 1 plus race, BMI, PIR, alcohol use, and education level
Exposure variables and risk factor variables were log transformed in the models
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Discussion
We were the first to observe significant negative correla-
tions between blood cobalt levels and HOMA-IR in the
general female adult population.
Few studies have focused on the associations of cobalt

with IR and type 2 diabetes. The review by Dubey et al.
summarized existing research on cobalt concentrations
in diabetic patients; however, there is not enough re-
search currently, and the existing research has produced
inconsistent conclusions [20]. Cao et al. found that ele-
vated or decreased plasma cobalt levels were associated
with a high risk of type 2 diabetes [21]. Anjum et al.

found that blood cobalt concentrations in diabetic pa-
tients were higher than those in non-diabetic patients
[22]. The urinary and serum concentrations of cobalt
were decreased in individuals with type 2 diabetes com-
pared with those in non-diabetic participants [23]. How-
ever, Menke et al. reported that higher quartiles of
urinary cobalt were not associated with IR [12] and type
2 diabetes risk [24]. A positive association between co-
balt and beta cell function was also observed, but it was
not statistically significant [25]. Our findings from a rela-
tively large sample suggest that cobalt may play a poten-
tial role in the IR process.

Table 3 Estimated coefficient (beta) and 95% confidence intervals (95% CI) of HOMA-IR in US adults during 2015–2016 for each
quartile increase in blood cobalt levels stratified by different covariates

HOMA-IR Quartile 1 Quartile 2 Quartile 3 Quartile 4 P for trend

All 0.038 (− 0.009, 0.084) 0.045 (− 0.004, 0.094) 0.03 (− 0.036, 0.061) Reference 0.095

Age (years)

< 60 0.073 (0.007, 0.139) 0.056 (− 0.013, 0.125) 0.022 (− 0.048, 0.093) Reference 0.016

≥ 60 − 0.017 (− 0.083, 0.049) 0.030 (− 0.041, 0.101) − 0.006 (− 0.073, 0.061) Reference 0.696

Gender

Male 0.020 (− 0.056, 0.096) 0.032 (− 0.049, 0.113) 0.061 (− 0.024, 0.146) Reference 0.732

Female 0.062 (0.001, 0.123) 0.061 (− 0.003, 0.126) − 0.016 (− 0.074, 0.043) Reference 0.037

Ethnicity

Mexican American 0.047 (− 0.063, 0.158) − 0.026 (− 0.143, 0.091) − 0.030 (− 0.145, 0.086) Reference 0.779

Other Hispanic 0.062 (− 0.064, 0.188) 0.082 (− 0.040, 0.204) 0.057 (− 0.071, 0.185) Reference 0.853

Non-Hispanic White 0.017 (− 0.053, 0.087) 0.050 (− 0.026, 0.125) − 0.005 (− 0.074, 0.065) Reference 0.279

Non-Hispanic Black 0.071 (− 0.050, 0.192) 0.083 (− 0.045, 0.211) 0.055 (− 0.087, 0.198) Reference 0.146

Other race—including multiracial 0.049 (− 0.089, 0.187) 0.040 (− 0.110, 0.191) 0.021 (− 0.119, 0.160) Reference 0.372

PIR

< 1 − 0.035 (− 0.145, 0.075) − 0.004 (− 0.119, 0.112) − 0.023 (− 0.127, 0.082) Reference 0.452

≥ 1 0.055 (0.004, 0.106) 0.057 (0.003, 0.112) 0.020 (− 0.035, 0.074) Reference 0.015

Alcohol use

Yes 0.032 (− 0.024, 0.089) 0.064 (0.003, 0.124) 0.038 (− 0.023, 0.099) Reference 0.094

No 0.076 (− 0.007, 0.158) 0.016 (− 0.068, 0.101) − 0.019 (− 0.099, 0.061) Reference 0.382

BMI (kg/m2)

< 25 0.090 (− 0.003, 0.183) 0.080 (− 0.018, 0.178) 0.097 (0.008, 0.186) Reference 0.175

25–30 0.014 (− 0.058, 0.085) 0.063 (− 0.010, 0.135) 0.021 (− 0.053, 0.095) Reference 0.177

> 30 0.029 (− 0.049, 0.107) 0.011 (− 0.075, 0.097) − 0.059 (− 0.145, 0.028) Reference 0.610

Education level

Less than 9th grade 0.127 (− 0.004, 0.257) 0.041 (− 0.093, 0.174) 0.056 (− 0.074, 0.186) Reference 0.205

9th–11th grade 0.102 (− 0.048, 0.252) 0.163 (− 0.001, 0.326) 0.129 (− 0.024, 0.283) Reference 0.117

High school graduate/GED or equivalent 0.041 (− 0.065, 0.148) 0.013 (− 0.094, 0.120) 0.029 (− 0.076, 0.135) Reference 0.710

Some college or AA degree 0.039 (− 0.046, 0.123) 0.073 (− 0.023, 0.168) − 0.006 (− 0.097, 0.084) Reference 0.386

College graduate or above − 0.019 (− 0.099, 0.060) 0.017 (− 0.067, 0.101) − 0.027 (− 0.116, 0.061) Reference 0.718

Model was adjusted for age, gender, race, BMI, PIR, alcohol use, and education level.
HOMA-IR homeostatic model assessment of insulin resistance, BMI body mass index, PIR poverty index ratio
Cobalt (μg/L), quartile 1: < 0.11; quartile 2: 0.11–0.13; quartile 3: 0.13–0.17; quartile 4: > 0.17
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Excess cobalt exposure, such as during the treat-
ment of cell lines or mice with excessive cobalt
chloride, may act as a hypoxia-mimetic agent that
can inhibit adiponectin transcription, thus contrib-
uting to the development of IR in vitro [26] and
in vivo [27]. Symptoms of cobalt deficiency include
hypoxia, growth retardation, weight loss, hepatic
steatosis, anemia, immune dysfunction, reproductive
dysfunction, and even death [28]. Low-dose cobalt,
as a trace element, has been shown to assemble
into enzymes such as cobalt protoporphyrin and at-
tenuate IR [29] and improve insulin sensitivity [30,
31] in mice. The median blood cobalt concentration
was lower than that in a previous occupational
population [32], suggesting that the general public
is likely not exposed to the same type or amount of
cobalt dust that caused these effects in workers. In
addition, 23 μg/L and 53 μg/L of cobalt in whole
blood in men and women, respectively, did not
cause alterations in hearing, vision, and cardiac and
neurological functions [33]. Thus, an appropriate
dose of cobalt in the subjects may have exerted
beneficial effects in the present study.
Our results revealed negative associations between

cobalt and HOMA-IR, and we thus speculated that
proper cobalt intake may benefit insulin sensitivity.
Cobalt-protoporphyrin IX treatment can improve
endothelial function and insulin sensitivity by redu-
cing oxidative stress, restoring the balance of
eNOS/iNOS expression, and increasing the HO-1

level [34]. Another study showed that in the early
stage of experimental diabetes, oral administration
of 0.5 mM cobalt in drinking water reduced in-
creases in the levels of thiobarbituric acid reactive
substances (TBARS) and antioxidant enzyme activ-
ities in the heart and aorta [35]. In addition, we
found that the associations were significant in fe-
male adults but not in male adults. Tvermoes et al.
found that female adults had higher rates of cobalt
absorption and lower rates of cobalt excretion than
male adults [33], which is consistent with our find-
ings that the cobalt levels in female adults were
higher than those in male adults. We speculate that
the reason for the sex difference in our study is the
higher iron demand in women. A common intes-
tinal uptake mechanism is used for cobalt and iron
absorption. Animal and human studies have indi-
cated that iron deficiency may increase cobalt ab-
sorption [36–39].
The present study has several critical strengths.

While previous epidemiological studies of cobalt-
related health effects were based on high exposure
levels or small samples, the current study evalu-
ated a relatively large sample with a non-
occupational cobalt exposure level. In addition to
the common covariates, potential factors that may
generate bias in the results, for example, PIR, alco-
hol use and education level, were included in our
study. Furthermore, we performed separate ana-
lyses stratified by sex to explore whether cobalt

Fig. 2 Estimated percent difference (% diff) and 95% confidence intervals (95% CI) in HOMA-IR in US adults during 2015–2016 for each
interquartile ratio (IQ ratio) increase in blood cobalt levels
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has effects on the sensitivity of different groups.
Some limitations were unavoidable in the current
investigation. Due to the nature of cross-sectional
studies, we cannot distinguish whether blood co-
balt influences IR or vice versa. Moreover, many
environmental chemicals (such as phthalates [40],
polycyclic aromatic hydrocarbons [41], polyfluor-
oalkyl chemicals [42], and bisphenol A [43]) are
potentially associated with IR. These chemicals
were not assessed in our analysis, which may have
impacts on the association between cobalt and IR.
Future studies are necessary to evaluate the inter-
action effect of different environmental chemicals
on the risk of IR. Additionally, some information,

such as cobalt contained in multivitamins and the
presence of polycystic ovarian syndrome and type
1 diabetes, was not collected in the NHANES, so
these factors could not be excluded in our study.
These factors may affect the results and
conclusions.

Conclusions
In conclusion, the present study results indicated
that blood cobalt exposure may be negatively asso-
ciated with IR in the general US female adult
population. Future research is needed to confirm
this finding and investigate potential mechanisms.

Fig. 3 A scatter plot and a fitted line with 95% CI showing the relationship between blood cobalt levels and HOMA-IR in male and female adults
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Fig. 4 Predicted spline curves for the associations of HOMA-IR with blood Co concentrations according to restricted cubic spline regression
models in the overall population (a), in males (b) and in females (c)
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