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Abstract Cytochrome P450s (CYPs) are one of the first

steps in the metabolism of xenobiotics, such as polycyclic

aromatic hydrocarbons (PAHs), which are bioactivated into

carcinogens. As such, changes in CYP expression are

potential biomarkers in human biomonitoring applications.

For the proper biomonitoring of environmental toxicants, it

is important to understand the biological relevance of each

biomarker and the associations among the biomarkers for

uses as exposure, effects, and susceptibility biomarkers.

Here, we have reviewed various aspects of CYPs for bio-

monitoring environmental health in terms of the CYP

substrates, such as PAHs, aromatic amines, benzene/tolu-

ene, and tobacco smoking-related nitrosamines. This

review also includes association studies between CYP

phenotypical alterations and other exposure, susceptibility,

and effect biomarkers. The association studies were mainly

performed in CYP gene-transfected cells and noninvasive

human biospecies, such as urine and peripheral blood. In

conclusion, we suggest that phenotypical alterations in

CYPs with exposure to environmental toxicants are useful

as susceptibility or effect biomarkers, particularly when the

phenotype-related genotypes are unknown.

Keywords Association � Biomonitoring � Biomarker �
Cytochrome P450s � Exposure � Genotype � Phenotype

Introduction

During the past 30 years, biomarker-based approaches

have been used in the area of human biomonitoring with

the expectation of refining exposure assessment, providing

tools for the detection of disease-related changes and their

association with environmental and genetic factors and,

thereby, facilitating an improved understanding of the eti-

ology of human disease [1, 2]. The National Institute of

Environmental Health Sciences (NIEHS) in the USA, for

example, has prioritized research focusing on the devel-

opment of markers sensitive to environmental exposure,

early (preclinical) biological response, and genetic sus-

ceptibility as one of its strategic plans for 2006–2011 [3].

In biomonitoring environmental toxicants, each bio-

marker and the associations among the biomarkers of

exposure, effect, response and susceptibility have the

potential to provide a better understanding of the biological

relevance of the markers themselves. Exposure biomarkers,

such as hydroxylated metabolites of toxicants in urine, are

used to indicate the internal dose received and to help

estimate the exposure amounts of toxicants that have

gained entry into the body [4]. Effect biomarkers are

measured as the forms that interact with critical targets,

such as DNA- and hemoglobin-adducts or cytogenic

alterations [for example, chromosomal aberrations (CAs),

micronuclei (MN), sister chromatid exchange (SCE),

comet/single-cell gel electrophoresis assay, among others].

Susceptibility biomarkers include genetic variations on

metabolic enzymes, such as cytochrome P450s (CYPs).

Figure 1 summarizes the relations among these biomarkers

in terms of risk assessment, which is the ultimate goal of

biomonitoring.

CYPs, which are localized in endoplasmic reticulum, are

a hemoprotein super-gene family. They are one of the first
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steps in the metabolism of xenobiotics, such as polycyclic

aromatic hydrocarbons (PAHs) and aromatic amines (AAs)

that are bioactivated to carcinogens [5, 6]. In addition,

expressions of the various CYPs have been broadly used as

biomarkers in environmental pollution, drug metabolism,

and remedies for pollutants. The increasing number of

articles published yearly on web sites dealing with the

applications of CYPs in biomonitoring – from 73 in 1997

to 191 in 2006 – are an indication of the increased interest

of the scientific community in this super-gene family

(Fig. 2).

Various methods, including enzyme assays, immunoas-

says, and reverse transcriptase (RT)-PCR, have been

developed to determine CYP expression. One recent

development is a 96-well plate filtration technique for the

quick removal of precipitated proteins, followed by fast

liquid chromatography/mass spectrometry (LC-MS/MS)

analyses for inhibition assays for CYPs [7].

CYPs are known to consist of 99 isozymes in 18 fami-

lies; there are 583 polymorphic forms in humans, and these

polymorphisms have been focused upon due to their

induced susceptibility to environmental toxicants [8].

Here, we have categorized four groups of CYP sub-

strates, based on the most widely accepted categorizations

in the literature, and reviewed the various applications of

CYPs, with special emphasis on their phenotypical altera-

tions, in terms of biomonitoring.

Polycyclic aromatic hydrocarbons

Although coal processing wastes, petroleum sludge,

asphalt, creosote, and other wood preservative wastes

contain high levels of PAHs, food, water, air, and tobacco

smoke are known as the main or most frequent sources of

human exposure to PAHs [9, 10]. A number of epidemi-

ological studies carried out on PAHs have shown that

highly exposed workers have an increased cancer risk

[11]. The current understanding of the carcinogeneses of

PAHs is based predominantly on two complementary

mechanisms – the bioproduction of bioactive metabolites,

such as diol epoxides, and reactive oxygen species

[12, 13].

The interaction of PAH ligands with the arylhydrocar-

bon receptor (AhR) can explain the pathway of CYP

induction [14]. The AhR is a ligand-activated transcription

factor that acts in concert with the AhR nuclear translocator

(ARNT). The nuclear AhR complex, ligand–AhR–ARNT,

interacts with consensus dioxin or xenobiotic response

elements (DREs/XREs) in the CYP 1 promoter and in

promoters of other Ah-responsive genes, and subsequent

recruitment of coactivators and general transcription of

coactivators and general transcription factors results in

the expression of target genes, such as CYP1A1, 1A2, and

1B1, as well as the genes of other biotransformation

enzymes, including NAD(P)H:quinoneoxidoreductase,

glutathione S-transferase, and UDP-glucuronosyltrans-

ferase [15].

In the human lymphocytes, mRNA levels of AhR were

found to be positively correlated with those of CYP1B1 and

CYP1A1 [16, 17], while mRNA levels of ARNT levels were

found to be correlated with only those of CYP1B1 [18]. On

the other hand, Hayashi et al. [19] reported that mRNA

expression levels of CYP1A1 were associated with those of

AhR and ARNT in smoker’s lymphocytes. Protein levels of

CYP1A2 were also associated with those of AhR/ARNT in

the human LS180 cell lines [20].

Biomonitoring of PAHs has been mainly accomplished

by measuring urine metabolites, such as 1-hydroxypyrene

(1-OHP), and PAH-related DNA- and protein-adducts.

Urinary 1-OHP, a metabolite of pyrene, has been used as a

biomarker for determining broad environmental PAH

exposure. An in vitro study showed that CYP1A1,

CYP1B1, and CYP1A2 are major metabolizing enzymes

involved in the bioproduction of 1-OHP from pyrene [21].

Fig. 1 The procedures of risk assessment with various biomarkers
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Fig. 2 Published papers dealing with applications of cytochrome

P450s (CYPs) in human biomonitoring (1997–2006). Dark bars All

applications, light bars applications of CYP polymorphisms in

biomonitoring
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Urinary levels of 1-OHP in smokers were correlated to

CYP1A2 activity in plasma [22].

Urinary 1-hydroxypyrene-O-glucuronide (1-OHPG) is

approximately five fold more fluorescent than 1-OHP,

leading Strickland et al. [23] to propose that 1-OHPG

has the potential to be a sensitive exposure biomarker of

PAHs. Pyrene is metabolized into 1-OHPG by CYPs and

UDP-glucuronyltransferase (UGT); however, the effects of

CYP expression on the bioproduction of 1-OHPG has not

yet been thoroughly studied.

Urinary naphthols [2-naphthol (2-NT) more than 1-NT]

reflect route-specific exposure to PAHs via air, as com-

pared to 1-OHP, which reflects PAH-total exposure from

diet, air, among others [24]. Cho et al. [25] reported that

CYP1A2 and CYP3A4 were their most effective in the

bioproduction of 1- and 2-NT, respectively, with both

CYP2E1 and CYP2A6 being slightly involved in these

metabolisms. We previously reported that the CYP2E1*5

polymorphism with -1019C [ T affects the levels of

urinary naphthols [24]. Compared to the number of 1-OHP

studies, biomonitoring studies on 2-NT are relatively

rare; consequently, further biomonitoring studies are

needed to determine whether the phenotype or genotype of

CYP2E1 are susceptibility biomarkers for biomonitoring

with 2-NT.

Benzo(a)pyrene (BaP), a representative carcinogen of

PAHs, is oxidized into the chemically reactive diolepoxide

(BPDE), which subsequently interacts with DNA to form

both stable and unstable adducts of DNA (Fig. 3; [26]).

CYP1A1 predominantly mediates BPDE-DNA adducts as

a rate-limiting step [27]. In addition, Alexandrov et al. [28]

observed a positive correlation between BPDE-DNA

adduct levels and microsomal aryl hydrocarbon hydroxy-

lase (AHH) activity in lung tissues. Mollerup et al. [29]

reported that CYP1A1 and CYP1B1 mRNA expression

levels were positively associated with bulky-DNA adducts.

Furthermore, Piipari et al. [30] found higher levels of PAH-

DNA adducts in lung tissues of active smokers who had

higher protein levels of CYP3A4, and CYP3A5 than oth-

ers. Degawa et al. [31] also reported positive associations

between total DNA adduct levels and immunoreactive

amounts of CYP1A1, -2C, and -3A4 in the larynx tissues of

smokers.

In contrast to PAHs, metabolites of nitro-PAHs and their

DNA-adducts have been proposed as biomarkers for

exposure to petroleum products, such diesel exhaust [32].

In addition, 3-nitrobenzanthrone (3-NBA), a nitro-PAH, is

known as an extremely potent mutagen [33–35]. In a study

of CYP-expressing V79 cells, Bieler et al. [35] observed

that 3-NBA-DNA adduct levels increased with increasing

activities of CYP3A4 and CYP oxidoreductase, but not

with increasing levels of CYP1A1.

The activity of CYPs, particularly that of the CYP1A

subfamily, is known to be involved in the metabolism of

aromatic compounds and may modify the effects of the

aromatic compounds in terms of DNA oxidation [36]. The

Fig. 3 Metabolic pathway
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oxidative damage to both DNA and DNA-adducts may be

involved in the increased risk of cancer in individuals

exposed to PAHs [37, 38]. Quantification of 8-hydrox-

ydeguanosine (8-OHdG) in the urine and blood has been

used as a biomarker of oxidative DNA damage [39]. After

evaluating three different studies, Poulsen et al. [40] con-

cluded that 8-OHdG was influenced by CYP1A2 activity

and that CYP1A2 activity was significantly correlated with

24-h urinary 8-OHdG excretion. In addition, Kim et al. [41]

reported correlations between the levels of urinary 1-OHP

and 8-OHdG in human leukocytes.

In terms of effect biomarkers, since the 1970s, the

conventional cytogenic analysis of peripheral blood lym-

phocytes has been accepted as a technique suitable for the

monitoring of genetic damage in somatic cells [42].

Chromosomal aberrations (CAs), a cytogenic biomarker,

are abnormalities in chromosome number or structure.

Brandt and Watson [43] proposed that they can function as

surrogate endpoints in human peripheral lymphocytes. In a

tire plant workers’ study, Vodicka et al. [44] found that

CAs were somewhat higher in individuals with higher

CYP2E1 expression levels in peripheral lymphocytes than

in those with relatively lower CYP2E1 expression levels.

However, the relationships between CYP expressions and

cytogenic alterations have not yet been clarified.

Various biomarkers, or combinations of them, have been

used to assess exposure to PAHs. In the case of occupa-

tional exposure, urinary excretion of hydroxylated PAH is

considered to be the standard for exposure assessment.

However, hydroxylated PAH-metabolites in urine can only

be used to assess the internal dose following recent expo-

sure to PAHs [45]. Therefore, biomarkers such as DNA-,

protein-, and hemoglobin-adducts are preferable for

assessing long-term exposure to PAHs. In addition, these

biomarkers are subject to a greater variability due to dif-

ferences in metabolic capacity and genetic polymorphisms

in CYPs. The susceptibility towards the induction of CYPs

may play an important role in the bioactivation and

detoxification of PAHs.

Benzene/toluene

Benzene is a volatile aromatic hydrocarbon solvent that is

widely used in industrial processes. It is absorbed by all

routes of exposure, rapidly distributed throughout the body

and metabolized to a variety of intermediate compounds,

such as benzene oxide, catechol, phenol, hydroquinone,

and benzoquinone in several organs, including the liver and

bone marrow [46]. The toxicity of benzene in occupational

populations has been characterized as either hematotoxic-

ity, including anemia leukopenia, and thrombocytopenia

with prolonged exposure to high doses, and irreversible

bone marrow damage [47]. Therefore, many attempts have

been made to monitor benzene exposure by analyzing

blood benzene levels and urinary metabolites, such as

urinary trans, trans-muconic acid (t, t-MA) [48].

CYP2E1 has been suggested to be responsible for the

metabolism of benzene [49–52]. Sheets et al. [52] also

reported that CYP2E1 and CYP2F1 had important roles in

the metabolism of benzene in the BEAS2B and A549

human lung cell lines, respectively. In an in vitro study,

Tassaneeyakul et al. [53] showed correlations between

CYP2E1 activity and the oxidation rates of different ben-

zene metabolites.

Due to the hematotoxicity of benzene, toluene has

widely replaced benzene in many industrial processes.

Therefore, the biomonitoring of toluene is an important

issue in various aspects of occupational health. The major

product of the metabolism of toluene by CYPs is benzyl

alcohol, which is easily converted to benzoic acid via

benzylaldehyde and excreted into the urine as hippuric acid

(HA) [53]. O-cresol and p-cresol are also minor metabolic

products of the catalytic action of CYPs on toluene [54].

Nakajima et al. [54] reported that CYP2E1 is the

most active enzyme in the formation of benzyl alcohol,

followed by CYP2B6, CYP2C8, CYP1A2, and CYP1A1.

Epidemiologic studies have shown that the CYP2E1*5

polymorphism is associated with toluene metabolism [55,

56]. The most active isozymes in the formation of benzyl

alcohol and minor phenolic metabolites are CYP2E1 and

CYP1A2, respectively [57]. In a cross-sectional study in

the print industry workers, levels of environmental toluene

were positively associated with CYP2E1 mRNA levels,

while urinary HA levels were negatively correlated with

CYP2E1 mRNA levels in peripheral lymphocytes [58].

This dissociation may be due to the capacity of toluene to

induce CYP2E1 mRNA expression, whereas HA reflects

toluene disposition: Therefore, CYP2E1 mRNA level and

the toluene exposure ratio (environmental toluene con-

centration:urinary HA concentration) showed a statistically

significant relationship.

In addition, genetic variations in CYPs, particularly the

CYP2E1*5 genetic polymorphism, have been emphasized

as susceptibility biomarkers for benzene or toluene expo-

sure [57, 59]. Therefore, we suggest that both CYP

phenotypes and genotypes should be considered for the

proper biomonitoring of CYP-substrates. However, phe-

notypes of CYPs should be used, when phenotype-

associated genetic polymorphisms are unavailable.

Heterocyclic amines and aromatic amines

Heterocyclic amines (HCAs) originate from the cooking of

meats, fish, and poultry and from tobacco smoke, diesel
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exhaust, etc. [60]. A number of epidemiological studies

have shown an association between the frequent con-

sumption of well-done cooked meats containing HCAs and

elevated risks for colon, prostate, and mammary cancers

[61–63]. There are two classes of HCAs formed in cooked

meats. One class consists of the N-methyl-2-aminoimi-

dazole moiety, possibly formed through the reaction of

pyridine or pyrazines, which are heat-catalyzed degrada-

tion products of amino acids, with sugars and creatine.

These compounds form in meats heated at 150�C or higher,

and their formation has been characterized in model sys-

tems. The second class of HCAs includes 2-amino-9H-

pyridine[2,3-b]indole, 2-amino-3-methyl-9H-pyridole[2,3-

b]indole, and the glutamic acid and tryptophan pyrolysate

mutagens. They are formed in proteins or produced directly

from the pyrolysis of these latter two amino acids gener-

ated at high temperature ([250�C) [64]. HCAs are not

intrinsically genotoxic; they require metabolic activation,

as do most chemical carcinogens. Therefore, HCAs are

oxidized to hydroxyamino derivatives by CYPs and then

further converted to ester forms. They may eventually

produce DNA-adducts through the formation of N–C bonds

at guanine bases by initially producing highly reactive ester

derivates that are known to be bioproduced by four enzyme

systems: N-acetyltransferase (NAT), sulfotransferase, pro-

lyl tRNA synthetase, and kinases [65]. As HCAs are known

to be mainly metabolized by CYP1A2, the rapid CYP1A2

phenotype confers an increased risk of colorectal cancer

when combined with the rapid NAT2 phenotype and con-

sumption of well-done meat [66, 67]. Representative

carcinogens of HCAs, 2-amino-3, 8-dimethylimidazo [4, 5-

f] quinoxaline (MeIQx), and 2-amino-1-methyl-6-pheny-

limidazo [4, 5-b] pyridine (PhIP), require metabolic

activation via N-oxidation to convert them into reactive

species with genotoxic activity. The N-oxidation of HCAs

is catalyzed primarily by hepatic CYP1A2 [68].

Other CYPs, such as CYP1A1, -1B1, and -3A4, are also

responsible, to some extent, for the oxidation of the exo-

cyclic primary amino group to a hydroxyamino group [69,

70]. For example, the induction of PhIP-DNA adducts in

human microsomes has been related to the activities of

CYP1A1, CYP1A2, and CYP3A4 [71].

Aminobiphenyls (ABPs) are one of the groups of

aromatic AAs. Of the various ABPs, 4-ABP is classified

by IARC [13] as a group 1 carcinogen. ABPs are known

to be metabolized into the N-hydroxy–ABP intermediates

principally in the liver, and these intermediates are pre-

cursors to the formation of ABP–DNA adducts in the

liver and bladder as well as ABP–hemoglobin (Hb)

adducts in blood [72]. A significant linear relationship

was observed between 4-ABP–Hb adducts and CYP1A2

activity [73]. Therefore, phenotypes with rapid CYP1A2

and slow acetylraters have been implicated in the

activation (N-oxidation) and detoxification (N-acethyla-

tion) of AAs for human bladder carcinogenesis [73, 74].

Landi et al. [75] reported that a combination of rapid

CYP1A2 and slow acetylraters increased the level of

ABP–Hb adducts.

Stillwell et al. [76] reported that CYP1A2 activity

showed a notable influence on total MeIQx excreted in

urine (0–12 h). Sinha et al. [77] also reported a relationship

between unconjugated MeIQx in 12-h urine samples and

CYP1A2 activity, indicating that more MeIQx is converted

to the bioactive N-hydroxy derivative with higher CYP1A2

activity.

In addition to HCAs and ABPs, nitrosamines are also

important chemicals for biomonitoring. Due to the impor-

tance of tobacco-specific and carcinogenic nitrosamines,

the biomonitoring issues in terms of nitrosamines are

reviewed in the following section on tobacco smoking.

Tobacco smoking

Both active tobacco smoking and passive smoking, such as

environmental tobacco smoking (ETS), have been

emphasized as major public health factors [78]. Of the

4000 identified chemicals in tobacco smoke, more than 60

are established carcinogens based on IARC assessments

[79].

Various biomarkers, such as nicotine, cotinine, 1-OHP,

naphthols, have been used as indicators of exposure to

tobacco smoking. Compared to nicotine in tobacco, coti-

nine, a primarily metabolite of nicotine, is stable in body

fluids and has a relatively long half-life of approximately

17 h. Therefore, the detection of cotinine is less dependent

on the time of sampling than nicotine and other metabolites

and has been used an exposure biomarker for active and

passive tobacco smoking [78].

CYP2B6, CYP 2C9, CYP 2D6, CYP 2E1, and CYP2A6

are known to biotransfer nicotine into cotinine [80–82].

Extensive empirical evidence indicates that CYP2A6 is the

major enzyme involved in nicotine C-oxidation. In addi-

tion, numerous epidemiology studies have been carried out

with the aim of clarifying whether CYP2A6 is functionally

associated with individual variations in the biomonitoring

of tobacco smoking [83–85]. We previously reported that

CYP2A6*4, the CYP2A6 gene-deleted type, showed lower

urinary cotinine levels [86].

The tobacco-specific nitrosamines, N-nitrosonornicotine

(NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-buta-

none (NNK), have been known to play a role in human

tobacco-related cancers. Fujita and Kamataki [87] reported

the involvement of CYPs in the metabolic activation of

tobacco-related N-nitrosamines in CYP-transfected cells.

CYP3A4 and CYP2E1 were linked to the activation of
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NNN and N-nitrosodemetylamine (NDMA) in human

fibroblasts [87], while CYP1A1 showed tobacco smoking-

inducible expression in the human placenta [88].

Therefore, levels of urinary cotinine and nitrosamines

are related to the expression of CYPs, particularly

CYP2A6. When the aim is to perform proper exposure

monitoring of active and passive tobacco smoking, alter-

ations of CYP2A6 expression should be considered.

Conclusion

In this review, we have summarized phenotypical altera-

tions to CYPs resulting from the exposure to xenobiotics

(see Table 1). The capacity in inducing CYPs may play an

important role between activation of the xenobiotics and

subsequent risk for developing chemically induced dis-

eases. In addition, assessment of the set of putative CYPs

will allow the identification of susceptible individuals or

subgroups. However, there remains some discrepancies in

reports on the associations between CYP expression and

exposure or effect biomarkers. In addition, various char-

acteristics of CYPs, such as their broad spectrum or the

overlapping of substrates, induce combined effects of CYP

isozymes during biomonitoring.

In conclusion, we suggest that phenotypical alterations

in CYPs with exposure to environmental toxicants are

preferable as susceptibility or effect biomarkers, particu-

larly when phenotype-related genotypes are unknown.
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